Robust <i>H</i><sub>∞</sub> Control for Fractional Order Systems with Order <i>α</i> (0 < <i>α</i> < 1)

oleh: Bingxin Li, Yaowei Liu, Xin Zhao

Format: Article
Diterbitkan: MDPI AG 2022-02-01

Deskripsi

In the paper, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mo>∞</mo></msub></semantics></math></inline-formula> and robust <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mo>∞</mo></msub></semantics></math></inline-formula> control for fractional order systems (FOS) with order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> are studied. Firstly, necessary and sufficient conditions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mo>∞</mo></msub></semantics></math></inline-formula> control and state feedback controller design are proposed. Then, robust <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mo>∞</mo></msub></semantics></math></inline-formula> control for FOS with uncertainty is studied, and state feedback controller is designed. These conditions are based on linear matrix inequalities (LMI) and can be easily solved by the LMI toolbox. Finally, the effectiveness of these conditions is verified by two numerical examples.