Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
oleh: Yvonne M. Mueller, Thijs J. Schrama, Rik Ruijten, Marco W. J. Schreurs, Dwin G. B. Grashof, Harmen J. G. van de Werken, Giovanna Jona Lasinio, Daniel Álvarez-Sierra, Caoimhe H. Kiernan, Melisa D. Castro Eiro, Marjan van Meurs, Inge Brouwers-Haspels, Manzhi Zhao, Ling Li, Harm de Wit, Christos A. Ouzounis, Merel E. P. Wilmsen, Tessa M. Alofs, Danique A. Laport, Tamara van Wees, Geoffrey Kraker, Maria C. Jaimes, Sebastiaan Van Bockstael, Manuel Hernández-González, Casper Rokx, Bart J. A. Rijnders, Ricardo Pujol-Borrell, Peter D. Katsikis
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2022-02-01 |
Deskripsi
Developing predictive methods to identify patients with high risk of severe COVID-19 disease is of crucial importance. Authors show here that by measuring anti-SARS-CoV-2 antibody and cytokine levels at the time of hospital admission and integrating the data by unsupervised hierarchical clustering/machine learning, it is possible to predict unfavourable outcome.