Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Overexpression of <it>eIF-5A2 </it>in mice causes accelerated organismal aging by increasing chromosome instability
oleh: Chen Leilei, Huen Michael SY, Tsang Sze, Deng Wen, Dong Suisui, Deng Hong, Huang Jian-Dong, Chen Muhan, Zan Tong, Zhu Gui-Xia, Guan Xin-Yuan
Format: | Article |
---|---|
Diterbitkan: | BMC 2011-05-01 |
Deskripsi
<p>Abstract</p> <p>Background</p> <p>Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene <it>eIF-5A2 </it>within the 3q26 region. Functional study has demonstrated the oncogenic role of <it>eIF-5A2 </it>in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of <it>eIF-5A2 </it>in an <it>eIF-5A2 </it>transgenic mouse model.</p> <p>Methods</p> <p>An <it>eIF-5A2 </it>transgenic mouse model was generated using human <it>eIF-5A2 </it>cDNA. The <it>eIF-5A2 </it>transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF) were isolated to further investigate molecular mechanism of <it>eIF-5A2 </it>in aging.</p> <p>Results</p> <p>Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in <it>eIF-5A2 </it>mice. Interestingly, we found that activation of <it>eIF-5A2 </it>repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF) cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (<it>p </it>< 0.05) resulted from an increase in the incidences of misaligned and lagging chromosomal materials, anaphase bridges, and micronuclei in the transgenic mice.</p> <p>Conclusion</p> <p>These observations suggest that <it>eIF-5A2 </it>mouse models could accelerate organismal aging by increasing chromosome instability.</p>