Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Bernstein polynomials method for solving multi-order fractional neutral pantograph equations with error and stability analysis
oleh: M.H.T. Alshbool
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2024-05-01 |
Deskripsi
In this investigation, we present a new method for addressing fractional neutral pantograph problems, utilizing the Bernstein polynomials method. We obtain solutions for the fractional pantograph equations by employing operational matrices of differentiation, derived from fractional derivatives in the Caputo sense applied to Bernstein polynomials. Error analysis, along with Chebyshev algorithms and interpolation nodes, is employed for solution characterization. Both theoretical and practical stability analyses of the method are provided. Demonstrative examples indicate that our proposed techniques occasionally yield exact solutions. We compare the algorithms using several established analytical methods. Our results reveal that our algorithm, based on Bernstein series solution methods, outperforms others, exhibiting superior performance with higher accuracy orders compared to those obtained from Chebyshev spectral methods, Bernoulli wavelet method, and Spectral Tau method.