A community approach to mortality prediction in sepsis via gene expression analysis

oleh: Timothy E. Sweeney, Thanneer M. Perumal, Ricardo Henao, Marshall Nichols, Judith A. Howrylak, Augustine M. Choi, Jesús F. Bermejo-Martin, Raquel Almansa, Eduardo Tamayo, Emma E. Davenport, Katie L. Burnham, Charles J. Hinds, Julian C. Knight, Christopher W. Woods, Stephen F. Kingsmore, Geoffrey S. Ginsburg, Hector R. Wong, Grant P. Parnell, Benjamin Tang, Lyle L. Moldawer, Frederick E. Moore, Larsson Omberg, Purvesh Khatri, Ephraim L. Tsalik, Lara M. Mangravite, Raymond J. Langley

Format: Article
Diterbitkan: Nature Portfolio 2018-02-01

Deskripsi

Sepsis is characterized by deregulated host response to infection. Efficient therapies are still needed but a limitation for sepsis treatment is the heterogeneity in patients. Here Sweeney et al. generate prognostic models based on gene expression to improve risk stratification classification and prediction for 30-day mortality of patients.