The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro)

oleh: Ali Ebrahim, Blake T. Riley, Desigan Kumaran, Babak Andi, Martin R. Fuchs, Sean McSweeney, Daniel A. Keedy

Format: Article
Diterbitkan: International Union of Crystallography 2022-09-01

Deskripsi

The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion interleaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.