Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
oleh: Rustam, Koredianto Usman, Mudyawati Kamaruddin, Dina Chamidah, Nopendri, Khaerudin Saleh, Yulinda Eliskar, Ismail Marzuki
Format: | Article |
---|---|
Diterbitkan: | CTU Central Library 2021-04-01 |
Deskripsi
A possibilistic fuzzy c-means (PFCM) algorithm is a reliable algorithm proposed to deal with the weaknesses associated with handling noise sensitivity and coincidence clusters in fuzzy c-means (FCM) and possibilistic c-means (PCM). However, the PFCM algorithm is only applicable to complete data sets. Therefore, this research modified the PFCM for clustering incomplete data sets to OCSPFCM and NPSPFCM with the performance evaluated based on three aspects, 1) accuracy percentage, 2) the number of iterations, and 3) centroid errors. The results showed that the NPSPFCM outperforms the OCSPFCM with missing values ranging from 5% − 30% for all experimental data sets. Furthermore, both algorithms provide average accuracies between 97.75%−78.98% and 98.86%−92.49%, respectively.