Anthropogenic CO<sub>2</sub>, air–sea CO<sub>2</sub> fluxes, and acidification in the Southern Ocean: results from a time-series analysis at station OISO-KERFIX (51°&thinsp;S–68°&thinsp;E)

oleh: N. Metzl, C. Lo Monaco, C. Leseurre, C. Leseurre, C. Ridame, G. Reverdin, T. T. T. Chau, F. Chevallier, M. Gehlen

Format: Article
Diterbitkan: Copernicus Publications 2024-06-01

Deskripsi

<p>The temporal variation of the carbonate system, air–sea CO<span class="inline-formula"><sub>2</sub></span> fluxes, and pH is analyzed in the southern Indian Ocean, south of the polar front, based on in situ data obtained from 1985 to 2021 at a fixed station (50°40<span class="inline-formula"><sup>′</sup></span> S–68°25<span class="inline-formula"><sup>′</sup></span> E) and results from a neural network model that reconstructs the fugacity of CO<span class="inline-formula"><sub>2</sub></span> (<span class="inline-formula"><i>f</i>CO<sub>2</sub></span>) and fluxes at monthly scale. Anthropogenic CO<span class="inline-formula"><sub>2</sub></span> (C<span class="inline-formula"><sub>ant</sub></span>) is estimated in the water column and is detected down to the bottom (1600 m) in 1985, resulting in an aragonite saturation horizon at 600 m that migrated up to 400 m in 2021 due to the accumulation of C<span class="inline-formula"><sub>ant</sub></span>. At the subsurface, the trend of C<span class="inline-formula"><sub>ant</sub></span> is estimated at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">0.53</mn><mo>±</mo><mn mathvariant="normal">0.01</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0335676cdfde01c2427480e63a96dffe"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-20-725-2024-ie00001.svg" width="64pt" height="10pt" src="os-20-725-2024-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">µ</span>mol kg<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> with a detectable increase in the trend in recent years. At the surface during austral winter the oceanic <span class="inline-formula"><i>f</i>CO<sub>2</sub></span> increased at a rate close to or slightly lower than in the atmosphere. To the contrary, in summer, we observed contrasting <span class="inline-formula"><i>f</i>CO<sub>2</sub></span> and dissolved inorganic carbon (C<span class="inline-formula"><sub><i>T</i></sub>)</span> trends depending on the decade and emphasizing the role of biological drivers on air–sea CO<span class="inline-formula"><sub>2</sub></span> fluxes and pH inter-annual variability. The regional air–sea CO<span class="inline-formula"><sub>2</sub></span> fluxes evolved from an annual source to the atmosphere of 0.8 molC m<span class="inline-formula"><sup>−2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> in 1985 to a sink of <span class="inline-formula">−0.5</span> molC m<span class="inline-formula"><sup>−2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> in 2020. Over 1985–2020, the annual pH trend in surface waters of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0165</mn><mo>±</mo><mn mathvariant="normal">0.0040</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="88pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f78ffdaaa34caa0f5eaa9c9ca35bfe50"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-20-725-2024-ie00002.svg" width="88pt" height="10pt" src="os-20-725-2024-ie00002.png"/></svg:svg></span></span> per decade was mainly controlled by the accumulation of anthropogenic CO<span class="inline-formula"><sub>2</sub></span>, but the summer pH trends were modulated by natural processes that reduced the acidification rate in the last decade. Using historical data from November 1962, we estimated the long-term trend for <span class="inline-formula"><i>f</i>CO<sub>2</sub></span>, C<span class="inline-formula"><sub>T</sub></span>, and pH, confirming that the progressive acidification was driven by the atmospheric CO<span class="inline-formula"><sub>2</sub></span> increase. In 59 years this led to a diminution of 11 % for both aragonite and calcite saturation state. As atmospheric CO<span class="inline-formula"><sub>2</sub></span> is expected to increase in the future, the pH and carbonate saturation state will decrease at a faster rate than observed in recent years. A projection of future C<span class="inline-formula"><sub>T</sub></span> concentrations for a high emission scenario (SSP5-8.5) indicates that the surface pH in 2100 would decrease to 7.32 in winter. This is up to <span class="inline-formula">−0.86</span> lower than pre-industrial pH and <span class="inline-formula">−0.71</span> lower than pH observed in 2020. The aragonite undersaturation in surface waters would be reached as soon as 2050 (scenario SSP5-8.5) and 20 years later for a stabilization scenario (SSP2-4.5) with potential impacts on phytoplankton species and higher trophic levels in the rich ecosystems of the Kerguelen Islands area.</p>