Deep convolutional neural networks to predict cardiovascular risk from computed tomography

oleh: Roman Zeleznik, Borek Foldyna, Parastou Eslami, Jakob Weiss, Ivanov Alexander, Jana Taron, Chintan Parmar, Raza M. Alvi, Dahlia Banerji, Mio Uno, Yasuka Kikuchi, Julia Karady, Lili Zhang, Jan-Erik Scholtz, Thomas Mayrhofer, Asya Lyass, Taylor F. Mahoney, Joseph M. Massaro, Ramachandran S. Vasan, Pamela S. Douglas, Udo Hoffmann, Michael T. Lu, Hugo J. W. L. Aerts

Format: Article
Diterbitkan: Nature Portfolio 2021-01-01

Deskripsi

Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.