Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Mitigation of Black-Box Attacks on Intrusion Detection Systems-Based ML
oleh: Shahad Alahmed, Qutaiba Alasad, Maytham M. Hammood, Jiann-Shiun Yuan, Mohammed Alawad
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-07-01 |
Deskripsi
Intrusion detection systems (IDS) are a very vital part of network security, as they can be used to protect the network from illegal intrusions and communications. To detect malicious network traffic, several IDS based on machine learning (ML) methods have been developed in the literature. Machine learning models, on the other hand, have recently been proved to be effective, since they are vulnerable to adversarial perturbations, which allows the opponent to crash the system while performing network queries. This motivated us to present a defensive model that uses adversarial training based on generative adversarial networks (GANs) as a defense strategy to offer better protection for the system against adversarial perturbations. The experiment was carried out using random forest as a classifier. In addition, both principal component analysis (PCA) and recursive features elimination (Rfe) techniques were leveraged as a feature selection to diminish the dimensionality of the dataset, and this led to enhancing the performance of the model significantly. The proposal was tested on a realistic and recent public network dataset: CSE-CICIDS2018. The simulation results showed that GAN-based adversarial training enhanced the resilience of the IDS model and mitigated the severity of the black-box attack.