Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Thermodynamic Impact of Mineral Surfaces on Amino Acid Polymerization: Aspartate Dimerization on Two-Line Ferrihydrite, Anatase, and γ-Alumina
oleh: Norio Kitadai, Kumiko Nishiuchi, Wataru Takahagi
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-02-01 |
Deskripsi
The presence of amino acids in diverse extraterrestrial materials has suggested that amino acids are widespread in our solar system, serving as a common class of components for the chemical evolution of life. However, there are a limited number of parameters available for modeling amino acid polymerization at mineral–water interfaces, although the interfacial conditions inevitably exist on astronomical bodies with surface liquid water. Here, we present a set of extended triple-layer model parameters for aspartate (Asp) and aspartyl-aspartate (AspAsp) adsorptions on two-line ferrihydrite, anatase, and γ-alumina determined based on the experimental adsorption data. By combining the parameters with the reported thermodynamic constants for amino acid polymerization in water, we computationally demonstrate how these minerals impact the AspAsp/Asp equilibrium over a wide range of environmental conditions. It was predicted, for example, that two-line ferrihydrite strongly promotes Asp dimerization, leading to the AspAsp/Asp ratio in the adsorbed state up to 41% even from a low Asp concentration (0.1 mM) at pH 4, which is approximately 5 × 10<sup>7</sup> times higher than that attainable without mineral (8.5 × 10<sup>−6</sup>%). Our exemplified approach enables us to screen wide environmental settings for abiotic peptide synthesis from a thermodynamic perspective, thereby narrowing down the geochemical situations to be explored for life’s origin on Earth and Earth-like habitable bodies.