Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Gene and protein sequence features augment HLA class I ligand predictions
oleh: Kaspar Bresser, Benoit P. Nicolet, Anita Jeko, Wei Wu, Fabricio Loayza-Puch, Reuven Agami, Albert J.R. Heck, Monika C. Wolkers, Ton N. Schumacher
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2024-06-01 |
Deskripsi
Summary: The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such “hard-coded” sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.