Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations
oleh: Mashadi, Yuliana Safitri, Sukono, Igif Gimin Prihanto, Muhamad Deni Johansyah, Moch Panji Agung Saputra
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2024-03-01 |
Deskripsi
Trapezoidal positive/negative fuzzy numbers have no single definition; instead, various authors define them in relation to different concepts. This means that arithmetic operations for trapezoidal fuzzy numbers also differ. For the operations of addition, subtraction, and scalar multiplication, there are not many differences; for multiplication, however, there are many differences. In general, multiplication is divided into various cases. For the inverse operation, there is not much to define; in general, for any trapezoidal fuzzy number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover><mo>,</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover><mo>⊗</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover></mrow></mfrac><mo>=</mo><mover accent="true"><mrow><mi>i</mi></mrow><mo>~</mo></mover><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> does not necessarily apply. As a result of the different arithmetic operations for multiplication and division employed by various authors, several researchers have tackled the same problem and reached different solutions, meaning that the application will also produce different results. To date, many authors have proposed various alternatives for the algebra of the trapezoidal fuzzy number. In this paper, using the parametric form approach to trapezoidal fuzzy numbers, an alternative to multiplication with only one formula is constructed for various cases. Furthermore, based on the definition of multiplication for any trapezoidal fuzzy number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover></mrow></semantics></math></inline-formula> is constructed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover></mrow></mfrac></mrow></semantics></math></inline-formula> so that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover><mo>⊗</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mover accent="true"><mrow><mi>u</mi></mrow><mo>~</mo></mover></mrow></mfrac><mo>=</mo><mover accent="true"><mrow><mi>i</mi></mrow><mo>~</mo></mover><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. Based on these conditions, we show that various properties that apply to real numbers also apply to any trapezoidal fuzzy number. Furthermore, we modify the elementary row operational steps for the trapezoidal fuzzy number matrix, which can be used to determine the inverse of a trapezoidal fuzzy number matrix with the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></semantics></math></inline-formula>. We also give the steps and examples necessary to determine the general inverse for a trapezoidal fuzzy number matrix of the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo> </mo><mo>≠</mo><mi>n</mi></mrow></semantics></math></inline-formula>. This ability to easily determine the inverse and general inverse of a trapezoidal fuzzy number matrix has a number of applications, such as solving fully trapezoidal fuzzy number linear systems and fuzzy transportation problems, especially in applications in fields outside of mathematics; for example, the application of triangular fuzzy numbers in medical problems is a topic currently receiving a significant amount of attention.