Maximal Instance Algorithm for Fast Mining of Spatial Co-Location Patterns

oleh: Guoqing Zhou, Qi Li, Guangming Deng

Format: Article
Diterbitkan: MDPI AG 2021-03-01

Deskripsi

The explosive growth of spatial data and the widespread use of spatial databases emphasize the need for spatial data mining. The subsets of features frequently located together in a geographic space are called spatial co-location patterns. It is difficult to discover co-location patterns because of the huge amount of data brought by the instances of spatial features. A large fraction of the computation time is devoted to generating row instances and candidate co-location patterns. This paper makes three main contributions for mining co-location patterns. First, the definition of maximal instances is given and a row instance (RI)-tree is constructed to find maximal instances from a spatial data set. Second, a fast method for generating all row instances and candidate co-locations is proposed and the feasibility of this method is proved. Third, a maximal instance algorithm with no join operations for mining co-location patterns is proposed. Finally, experimental evaluations using synthetic data sets and a real data set show that maximal instance algorithm is feasible and has better performance.