Simulations of <sup>7</sup>Be and <sup>10</sup>Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates

oleh: M. Zheng, M. Zheng, M. Zheng, H. Liu, H. Liu, F. Adolphi, F. Adolphi, R. Muscheler, Z. Lu, M. Wu, N. L. Prisle

Format: Article
Diterbitkan: Copernicus Publications 2023-12-01

Deskripsi

<p><span id="page7038"/>The cosmogenic radionuclides <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be are useful tracers for atmospheric transport studies. Combining <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be measurements with an atmospheric transport model can not only improve our understanding of the radionuclide transport and deposition processes but also provide an evaluation of the transport process in the model. To simulate these aerosol tracers, it is critical to evaluate the influence of radionuclide production uncertainties on simulations. Here we use the GEOS-Chem chemical transport model driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis to simulate <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be with the state-of-the-art production rate from the CRAC:Be (Cosmic Ray Atmospheric Cascade: Beryllium) model considering realistic spatial geomagnetic cutoff rigidities (denoted as P16spa). We also perform two sensitivity simulations: one with the default production rate in GEOS-Chem based on an empirical approach (denoted as LP67) and the other with the production rate from the CRAC:Be but considering only geomagnetic cutoff rigidities for a geocentric axial dipole (denoted as P16). The model results are comprehensively evaluated with a large number of measurements including surface air concentrations and deposition fluxes. The simulation with the P16spa production can reproduce the absolute values and temporal variability of <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be surface concentrations and deposition fluxes on annual and sub-annual scales, as well as the vertical profiles of air concentrations. The simulation with the LP67 production tends to overestimate the absolute values of <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be concentrations. The P16 simulation suggests less than 10 % differences compared to P16spa but a significant positive bias (<span class="inline-formula">∼18</span> %) in the <span class="inline-formula"><sup>7</sup></span>Be deposition fluxes over East Asia. We find that the deposition fluxes are more sensitive to the production in the troposphere and downward transport from the stratosphere. Independent of the production models, surface air concentrations and deposition fluxes from all simulations show similar seasonal variations, suggesting a dominant meteorological influence. The model can also reasonably simulate the stratosphere–troposphere exchange process of <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be by producing stratospheric contribution and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">10</mn></msup><mi mathvariant="normal">Be</mi><msup><mo>/</mo><mn mathvariant="normal">7</mn></msup><mi mathvariant="normal">Be</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e96a973b28b52d833fd6f0858772ee69"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-16-7037-2023-ie00001.svg" width="49pt" height="15pt" src="gmd-16-7037-2023-ie00001.png"/></svg:svg></span></span> ratio values that agree with measurements. Finally, we illustrate the importance of including the time-varying solar modulations in the production calculation, which significantly improve the agreement between model results and measurements, especially at mid-latitudes and high latitudes. Reduced uncertainties in the production rates, as demonstrated in this study, improve the utility of <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be as aerosol tracers for evaluating and testing transport and scavenging processes in global models. For future GEOS-Chem simulations of <span class="inline-formula"><sup>7</sup></span>Be and <span class="inline-formula"><sup>10</sup></span>Be, we recommend using the P16spa (versus default LP67) production rate.</p>