Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
UAV-Based Multispectral Phenotyping for Disease Resistance to Accelerate Crop Improvement under Changing Climate Conditions
oleh: Walter Chivasa, Onisimo Mutanga, Chandrashekhar Biradar
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2020-07-01 |
Deskripsi
Accelerating crop improvement for increased yield and better adaptation to changing climatic conditions is an issue of increasing urgency in order to satisfy the ever-increasing global food demand. However, the major bottleneck is the absence of high-throughput plant phenotyping methods for rapid and cost-effective data-driven variety selection and release in plant breeding. Traditional phenotyping methods that rely on trained experts are slow, costly, labor-intensive, subjective, and often require destructive sampling. We explore ways to improve the efficiency of crop phenotyping through the use of unmanned aerial vehicle (UAV)-based multispectral remotely sensed data in maize (<i>Zea mays</i> L.) varietal response to maize streak virus (MSV) disease. Twenty-five maize varieties grown in a trial with three replications were evaluated under artificial MSV inoculation. Ground scoring for MSV infection was carried out at mid-vegetative, flowering, and mid-grain filling on a scale of 1 (resistant) to 9 (susceptible). UAV-derived spectral data were acquired at these three different phenological stages in multispectral bands corresponding to Green (0.53–0.57 μm), Red (0.64–0.68 μm), Rededge (0.73–0.74 μm), and Near-Infrared (0.77–0.81 μm). The imagery captured was stitched together in Pix4Dmapper, which generates two types of multispectral orthomosaics: the NoAlpha and the transparent mosaics for each band. The NoAlpha imagery was used as input into QGIS to extract reflectance data. Six vegetation indices were derived for each variety: normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), Rededge NDVI (NDVI<sub>rededge</sub>), Simple Ratio (SR), green Chlorophyll Index (CI<sub>green</sub>), and Rededge Chlorophyll Index (CI<sub>rededge</sub>). The Random Forest (RF) classifier was used to evaluate UAV-derived spectral and VIs with and without variable optimization. Correlations between the UAV-derived data and manual MSV scores were significant (R = 0.74–0.84). Varieties were classified into resistant, moderately resistant, and susceptible with overall classification accuracies of 77.3% (Kappa = 0.64) with optimized and 68.2% (Kappa = 0.51) without optimized variables, representing an improvement of ~13.3% due to variable optimization. The RF model selected GNDVI, CI<sub>green</sub>, CI<sub>rededge</sub>, and the Red band as the most important variables for classification. Mid-vegetative was the most ideal phenological stage for accurate varietal phenotyping and discrimination using UAV-derived multispectral data with RF under artificial MSV inoculation. The results provide a rapid UAV-based remote sensing solution that offers a step-change towards data availability at high spatial (submeter) and temporal (daily/weekly) resolution in varietal analysis for quick and robust high-throughput plant phenotyping, important for timely and unbiased data-driven variety selection and release in plant breeding programs, especially as climate change accelerates.