Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Pendekatan Deep Learning Untuk Prediksi Durasi Perjalanan
oleh: Nur Ghaniaviyanto Ramadhan, Yohani Setiya Rafika Nur, Faisal Dharma Adhinata
Format: | Article |
---|---|
Diterbitkan: | Center for Research and Community Service, Institut Informatika Indonesia Surabaya 2022-06-01 |
Deskripsi
Setiap orang dalam kehidupan memiliki kecenderungan untuk berpindah dari satu tempat ke tempat lainnya. Perpindahan tersebut dapat dilakukan dengan menggunakan berbagai macam cara seperti menggunakan transportasi pribadi atau umum (bus, taksi, pesawat, dan kereta api), Pada perkembangan teknologi saat ini mode transportasi sudah semakin canggih. Akan tetapi masih ada mode transportasi yang belum modern misalnya seperti taksi, dimana salah satunya tidak dapat memprediksi lama waktu perjalanan. Meskipun sudah ada taksi yang berbasis online seperti Uber, akan tetapi masih banyak taksi yang belum berbasis online sehingga tidak bisa dilakukan estimasi waktu dan jarak. Permasalahan di atas dapat diselesaikan dengan cara melakukan pendekatan berbasis pembelajaran mesin. Salah satu keuntungan yang didapatkan jika kita dapat mengetahui lama waktu estimasi perjalanan yaitu dapat mengatur waktu perjalanan sesuai dengan rutinitas yang sedang dikerjakan ataupun juga dapat menghemat biaya yang dikeluarkan dengan mengetahui jarak yang akan dijalankan. Pada penelitian ini bertujuan untuk memprediksi durasi perjalanan pada dataset New York taxi trip duration menggunakan pendekatan deep learning yaitu Long Short Term Memory Reccurent Neural Network (LSTM-RNN). Eksperimen dilakukan dengan melakukan tuning parameter terkait seperti epoch, nilai dropout, dan neurons. Pengukuran hasil menggunakan nilai Root Mean Square Error (RMSE) dan nilai loss. Hasil yang didapatkan menggunakan model LSTM-RNN sebesar 0,0012 untuk nilai loss dan RMSE 0,4.