Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Hyperspectral-Based Classification of Managed Permanent Grassland with Multilayer Perceptrons: Influence of Spectral Band Count and Spectral Regions on Model Performance
oleh: Roland Britz, Norbert Barta, Andreas Klingler, Andreas Schaumberger, Alexander Bauer, Erich M. Pötsch, Andreas Gronauer, Viktoria Motsch
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-04-01 |
Deskripsi
Detailed knowledge of botanical composition is a key factor for the sustainable and site-specific management of permanent grassland and facilitates an improvement in the performance and efficiency of livestock feeding. Spectral-based data acquisition combined with machine learning has the potential to classify species groups and plant parts in permanent grassland with high accuracy. However, a disadvantage of this method is the fact that hyperspectral sensors with a wide spectral range and fine spectral and high spatial resolution are costly and create large amounts of data. Therefore, the question arises as to whether these parameters are necessary for accurate grassland classification. Thus, the use of sensors with lower spectral and spatial resolution and correspondingly lower data processing requirements could be a conceivable approach. Therefore, we investigated the classification performance with reduced predictor sets formed by different approaches in permanent grassland. For pixel-based classification, a cross-validated mean accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.1</mn></mrow></semantics></math></inline-formula>% was reached using a multilayer perceptron (MLP) including all 191 available predictors, i.e., spectral bands. Using only 48 high-performing predictors, an accuracy of 80% could still be achieved. In particular, the spectral regions of 954 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> to 956 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>, 684 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> to 744 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> and 442 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> to 444 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> contributed most to the classification performance. These results provide a promising basis for future data acquisition and the analysis of grassland vegetation.