Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic

oleh: Lv Yu-Pei, Sun Tian-Chuan, Chu Yu-Ming

Format: Article
Diterbitkan: SpringerOpen 2011-01-01

Deskripsi

<p>Abstract</p> <p>We prove that the function <it>F</it> <sub> <it>&#945;,&#946;</it> </sub>(<it>x</it>) = <it>x</it> <sup> <it>&#945;</it> </sup>&#915;<sup> <it>&#946;</it> </sup>(<it>x</it>)/&#915;(<it>&#946;x</it>) is strictly logarithmically completely monotonic on (0, &#8734;) if and only if (<it>&#945;</it>, <it>&#946;</it>) &#8712; {(<it>&#945;</it>, <it>&#946;</it>) : <it>&#946; &gt; </it>0, <it>&#946; </it>&#8805; 2<it>&#945; </it>+ 1, <it>&#946; </it>&#8805; <it>&#945; </it>+ 1}{(<it>&#945;</it>, <it>&#946;</it>) : <it>&#945; </it>= 0, <it>&#946; </it>= 1} and that [<it>F</it> <sub> <it>&#945;,&#946;</it> </sub>(<it>x</it>)]<sup>-1 </sup>is strictly logarithmically completely monotonic on (0, &#8734;) if and only if (<it>&#945;</it>, <it>&#946;</it>) &#8712; {(<it>&#945;</it>, <it>&#946; </it>) : <it>&#946; </it>&gt; 0, <it>&#946; </it>&#8804; 2<it>&#945; </it>+ 1, <it>&#946; </it>&#8804; <it>&#945; </it>+ 1}{(<it>&#945;</it>, <it>&#946; </it>) : <it>&#945; </it>= 0, <it>&#946; </it>= 1}.</p> <p> <b>2010 Mathematics Subject Classification: </b>33B15; 26A48.</p>