Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The Energy Harvesting Performance of a Flexible Triboelectric-Based Electrospun PTFE/PVDF Fibre
oleh: Pattarinee White, Dmitry Bavykin, Mohamed Moshrefi-Torbati, Stephen Beeby
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-01-01 |
Deskripsi
A triboelectric power generator/energy harvester is an attractive option for mechanical energy harvesting for smart, wearable applications. This paper reports on the fabrication and evaluation of the energy harvesting performance of Polytetrafluoroethylene/Polyvinylidene Fluoride (PTFE/PVDF) fibre prepared using a one-step electrospinning technique. Different concentrations (0, 1, 2, 3, and 4%wt.) of the 1 μm PTFE powder in the electrospun PVDF fibre were investigated. The electrospun fibre was assembled into a nonwoven fabric mat and tested in the vertical contact separation triboelectric mode by constructing a sandwich structure with electrodes in a book-shaped assembly. The voltage output from the cyclical compressive test for fibres with 4%wt. PTFE in PVDF was five times greater than it was for the 100% PVDF electrospun fibres. The influence of adding nylon fabric as a triboelectric donor material within the assembly was explored. The output of the 4%wt. PTFE/PVDF sample was then tested with and without nylon fabric at different frequencies (3–12 Hz). The results show a further 80% increase in the output voltage with the additional nylon fabric included, and the harvester was able to illuminate up to 95 LEDs.