Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Glucose-Modified Zein Nanoparticles Enhance Oral Delivery of Docetaxel
oleh: Yabing Xing, Xiao Li, Weiwei Cui, Meng Xue, Yanan Quan, Xinhong Guo
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-06-01 |
Deskripsi
Based on glucose (G) transporters (GLUTs), structuring nanoparticles with G as a target are an effective strategy to enhance oral bioavailability and anti-tumor effects of drugs. A novel drug delivery system using G-modified zein (GZ) nanoparticles loaded with docetaxel (DTX) (DTX-GNPs) was prepared and characterized <i>in vitro</i> and <i>in vivo</i> via assessment of cellular uptake, absorption site, pharmacokinetics, <i>ex vivo</i> distribution, and anti-tumor effects. The DTX-GNPs were approximately 120 nm in size. Compared with DTX-NPs, G modification significantly enhanced cellular uptake of DTX-GNPs by 1.22 times in CaCo-2 cells, which was related to GLUT mediation and the enhancement of endocytosis pathways <i>via</i> clathrin, micropinocytosis, and caveolin. Compared to DTX-NPs, G modification significantly enhanced DTX-NP absorption in the jejunum and ileum, delayed plasma concentration peak time, prolonged the average residence time <i>in vivo</i>, and increased oral bioavailability (from 43.82% to 96.04%). Cellular uptake and oral bioavailability of DTX were significantly affected by the G modification ratio. Compared with DTX-NPs, G modification significantly reduced drug distribution in the liver, lungs, and kidneys and increased tumor distribution and tumor growth inhibition rate without obvious systemic toxicity. This study demonstrated the potential of GZ-NPs as nanocarriers for DTX to enhance oral bioavailability and anti-tumor effects.