Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Magnetoelectric and Multiferroic Properties of BaTiO<sub>3</sub>/NiFe<sub>2</sub>O<sub>4</sub>/BaTiO<sub>3</sub> Heterostructured Thin Films Grown by Pulsed Laser Deposition Technique
oleh: Venkata Sreenivas Puli, Dhiren Kumar Pradhan, Gollapudi Sreenivasulu, Simhachalam Narendra Babu, Nandiraju Venkata Prasad, Kalpana Madgula, Douglas B. Chrisey, Ram S. Katiyar
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-09-01 |
Deskripsi
Development of lead-free BaTiO<sub>3</sub>/NiFe<sub>2</sub>O<sub>4</sub>/BaTiO<sub>3</sub> (BTO/NFO/BTO) trilayer structure thin films is significant for the realization of eco-friendly and implantable microelectromechanical systems (MEMS)-based devices. In the present work, we report BTO/NFO/BTO trilayer structure as a representative ferroelectric/ferromagnetic/ferroelectric (FE/FM/FE) system deposited on Pt(111)/TiO<sub>2</sub>/SiO<sub>2</sub>/Si using Pulsed Laser Deposition (PLD) technique. We report the ferroelectric, magnetic, and ME properties of BTO/NFO/BTO trilayer nanoscale heterostructure having dimensions 140/80/140 nm, at room temperature. High room temperature dielectric constant ~2145 at 100 Hz with low dielectric loss ~0.05 at 1 MHz is observed. Further, the deposited (BTO/NFO/BTO) tri-layered thin films showed magnetoelectric, multiferroic behavior with remanent polarization of 8.63 μCcm<sup>−2</sup> at about 0.25 MV/cm and a reasonably high saturation magnetization of ~16 emu/cm<sup>3</sup> at ~10 kOe is witnessed at room temperature. Tri-layered films have shown interesting magnetoelectric (ME) coupling coefficient (α<sub>E</sub>) ~54.5 mV/cm Oe at room temperature.