Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In Vitro Organogenesis
oleh: Pascual García-Pérez, Eva Lozano-Milo, Mariana Landín, Pedro Pablo Gallego
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2020-05-01 |
Deskripsi
Organogenesis constitutes the biological feature driving plant in vitro regeneration, in which the role of plant hormones is crucial. The use of machine learning (ML) technology stands out as a novel approach to characterize the combined role of two phytohormones, the auxin indoleacetic acid (IAA) and the cytokinin 6-benzylaminopurine (BAP), on the in vitro organogenesis of unexploited medicinal plants from the <i>Bryophyllum</i> subgenus. The predictive model generated by neurofuzzy logic, a combination of artificial neural networks (ANNs) and fuzzy logic algorithms, was able to reveal the critical factors affecting such multifactorial process over the experimental dataset collected. The rules obtained along with the model allowed to decipher that BAP had a pleiotropic effect on the <i>Bryophyllum</i> spp., as it caused different organogenetic responses depending on its concentration and the genotype, including direct and indirect shoot organogenesis and callus formation. On the contrary, IAA showed an inhibiting role, restricted to indirect shoot regeneration. In this work, neurofuzzy logic emerged as a cutting-edge method to characterize the mechanism of action of two phytohormones, leading to the optimization of plant tissue culture protocols with high large-scale biotechnological applicability.