Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside-stimulated dental pulp stem cells-derived conditioned medium enhances cell activity and anti-inflammation
oleh: Yu-tang Chin, Che-ming Liu, Ting-yi Chen, Yao-yu Chung, Chi-yu Lin, Chao-nan Hsiung, Yun-shen Jan, Hsien-chung Chiu, Earl Fu, Sheng-yang Lee
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2021-03-01 |
Deskripsi
Background/purpose: Dental pulp stem cells (DPSCs) contribute to the regeneration of various tissues and have superior proliferation, immune privilege, and anti-inflammation properties to other mesenchymal stem cells. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) not only enhances the aforementioned properties of DPSCs but also promotes self-renewal and reprogramming-like ability. However, whether THSG enhances the aforementioned properties and abilities through direct or indirect interaction mechanisms remains unclear. To address this knowledge gap, we examined the effects of THSG-stimulated DPSC-derived conditioned medium (THSG-CM) on the activity and anti-inflammation properties of cells. Materials and methods: DPSCs were treated with various concentrations of THSG to produce THSG-CM, which was then collected, analyzed, and lyophilized. A cytokine profiling antibody assay was used to compare protein components between THSG-treated and nontreated CM. Human skin fibroblasts (HSFs) and human gingival fibroblasts (HGFs) were used to investigate the effect of THSG-CM on cell proliferation, anti-inflammation, and wound healing abilities; for this investigation, MTS assay, quantitative real-time PCR analysis, and 2-well silicone inserts wound model were conducted. Results: We observed that THSG enhanced the secretion of growth- and immune-associated proteins in THSG-CM and increased the proliferation of HSFs and HGFs. Furthermore, THSG-CM significantly attenuated lipopolysaccharide-stimulated mRNA levels of cytokines in both cells and improved wound healing abilities. Conclusion: We conclude that THSG-CM had more beneficial effects on cell activity and anti-inflammation in the HSFs and HGFs than DPSC-derived CM. DPSC-derived CM can be developed into a cell-free regenerative strategy in the future, and its therapeutic efficacy may be improved by THSG-CM.