Accelerating the formation of the conjugated ladder structure of Poly(acrylonitrile-co-vinyl acetate) by cross-linked poplar lignin doped with boron phosphate

oleh: Hui Shi, Qin Ouyang, Jing-yu Wang, Pin-lei Zhu, Jian-wei Hao, Xian-bo Huang

Format: Article
Diterbitkan: IOP Publishing 2020-01-01

Deskripsi

Utilizing renewable resources and accelerating thermal stabilization have been two main effective technical means to reduce the cost of poly(acrylonitrile) (PAN) based carbon fibre (CF). In this work, cross-linked poplar lignin (CPPL) with higher carbon content and 15 times the weight-average molecular weight of poplar lignin (PPL) was formed by doping boron phosphate (BP) in situ composites, which was blended with poly(acrylonitrile-co-vinyl acetate) (PANVA) to prepare a low-cost partially bio-based composite PANVA/CPPL-BP. During thermal stabilization, the C1s curve-fitting of x-ray photoelectron spectroscopy (XPS) spectra showed that the conjugated ladder structure of PANVA/CPPL-BP started to form at 230 °C, which was 20 °C lower than PANVA. And the acceleration in forming conjugated ladder structures was further confirmed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric (TG), and TG-FTIR. During simulated low-temperature carbonization for composites stabilized at 230 °C in advance, the addition of CPPL-BP greatly improved the order of graphitic structure for PANVA. The mechanical property of CF mats has also been obviously improved by CPPL-BP. The possible mechanism that CPPL-BP accelerating the formation of conjugated ladder structures for PANVA/CPPL-BP during thermal stabilization was proposed. With such improvement on accelerating thermal stabilization and utilizing cheap bio-material at the same time, this PANVA/CPPL-BP composite has a great potential in developing low-cost CF.