Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019
oleh: H. Tian, H. Tian, Z. Bian, Z. Bian, H. Shi, H. Shi, X. Qin, N. Pan, N. Pan, C. Lu, S. Pan, S. Pan, F. N. Tubiello, J. Chang, G. Conchedda, J. Liu, N. Mueller, N. Mueller, K. Nishina, R. Xu, J. Yang, L. You, B. Zhang
| Format: | Article |
|---|---|
| Diterbitkan: | Copernicus Publications 2022-10-01 |
Deskripsi
<p>Excessive anthropogenic nitrogen (N) inputs to the biosphere have disrupted the global nitrogen cycle. To better quantify the spatial and temporal patterns of anthropogenic N inputs, assess their impacts on the biogeochemical cycles of the planet and the living organisms, and improve nitrogen use efficiency (NUE) for sustainable development, we have developed a comprehensive and synthetic dataset for reconstructing the History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere. The HaNi dataset takes advantage of different data sources in a spatiotemporally consistent way to generate a set of high-resolution gridded N input products from the preindustrial period to the present (1860–2019). The HaNi dataset includes annual rates of synthetic N fertilizer, manure application/deposition, and atmospheric N deposition on cropland, pasture, and rangeland at a spatial resolution of 5 arcmin <span class="inline-formula">×</span> 5 arcmin. Specifically, the N inputs are categorized, according to the N forms and land uses, into 10 types: (1) <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="4642054ac173397a3d5fd40acdc199ce"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4551-2022-ie00001.svg" width="24pt" height="15pt" src="essd-14-4551-2022-ie00001.png"/></svg:svg></span></span>-N fertilizer applied to cropland, (2) NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0aaab3ee324d7a9ba8e4b96f67d8036e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4551-2022-ie00002.svg" width="9pt" height="16pt" src="essd-14-4551-2022-ie00002.png"/></svg:svg></span></span>-N fertilizer applied to cropland, (3) <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="17bf0b5f0c107a33a7e35784db8681d7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4551-2022-ie00003.svg" width="24pt" height="15pt" src="essd-14-4551-2022-ie00003.png"/></svg:svg></span></span>-N fertilizer applied to pasture, (4) NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8c72af1edd6d67ed562efcaf5163d22b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4551-2022-ie00004.svg" width="9pt" height="16pt" src="essd-14-4551-2022-ie00004.png"/></svg:svg></span></span>-N fertilizer applied to pasture, (5) manure N application on cropland, (6) manure N application on pasture, (7) manure N deposition on pasture, (8) manure N deposition on rangeland, (9) NH<span class="inline-formula"><sub><i>x</i></sub></span>-N deposition, and (10) NO<span class="inline-formula"><sub><i>y</i></sub></span>-N deposition. The total anthropogenic N (TN) inputs to global terrestrial ecosystems increased from 29.05 Tg N yr<span class="inline-formula"><sup>−1</sup></span> in the 1860s to 267.23 Tg N yr<span class="inline-formula"><sup>−1</sup></span> in the 2010s, with the dominant N source changing from atmospheric N deposition (before the 1900s) to manure N (in the 1910s–2000s) and then to synthetic fertilizer in the 2010s. The proportion of synthetic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e262bfb93faeaa5aa4891ce7e9a7cf34"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4551-2022-ie00005.svg" width="24pt" height="15pt" src="essd-14-4551-2022-ie00005.png"/></svg:svg></span></span>-N in fertilizer input increased from 64 % in the 1960s to 90 % in the 2010s, while synthetic NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fa1148a5a7ab62133104fb46bf612014"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4551-2022-ie00006.svg" width="9pt" height="16pt" src="essd-14-4551-2022-ie00006.png"/></svg:svg></span></span>-N fertilizer decreased from 36 % in the 1960s to 10 % in the 2010s. Hotspots of TN inputs shifted from Europe and North America to East and South Asia during the 1960s–2010s. Such spatial and temporal dynamics captured by the HaNi dataset are expected to facilitate a comprehensive assessment of the coupled human–Earth system and address a variety of social welfare issues, such as the climate–biosphere feedback, air pollution, water quality, and biodiversity. The data are available at <a href="https://doi.org/10.1594/PANGAEA.942069">https://doi.org/10.1594/PANGAEA.942069</a> (Tian et al., 2022).</p>