Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
How much joint resummation do we need?
oleh: Gillian Lustermans, Andreas Papaefstathiou, Wouter J. Waalewijn
Format: | Article |
---|---|
Diterbitkan: | SpringerOpen 2019-10-01 |
Deskripsi
Abstract Large logarithms that arise in cross sections due to the collinear and soft singularities of QCD are traditionally treated using parton showers or analytic resummation. Parton showers provide a fully-differential description of an event but are challenging to extend beyond leading logarithmic accuracy. On the other hand, resummation calculations can achieve higher logarithmic accuracy but often for only a single observable. Recently, there have been many resummation calculations that jointly resum multiple logarithms. Here we investigate the benefits and limitations of joint resummation in a case study, focussing on the family of e + e − event shapes called angularities. We calculate the cross section differential in n angularities at next-to-leading logarithmic accuracy. We investigate whether reweighing a flat phase-space generator to this resummed prediction, or the corresponding distributions from Herwig and Pythia, leads to improved predictions for other angularities. We find an order of magnitude improvement for n = 2 over n = 1, highlighting the benefit of joint resummation, but diminishing returns for larger values of n.