Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment
oleh: Raja Solanki, Simran Arora, Pradyumn Kumar Sahoo, Pedro H. R. S. Moraes
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-12-01 |
Deskripsi
The standard formulation of General Relativity Theory, in the absence of a cosmological constant, is unable to explain the responsible mechanism for the observed late-time cosmic acceleration. On the other hand, by inserting the cosmological constant in Einstein’s field equations, it is possible to describe the cosmic acceleration, but the cosmological constant suffers from an unprecedented fine-tuning problem. This motivates one to modify Einstein’s spacetime geometry of General Relativity. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></semantics></math></inline-formula> modified theory of gravity is an alternative theory to General Relativity, where the non-metricity scalar <i>Q</i> is the responsible candidate for gravitational interactions. In the present work, we consider a Friedmann–Lemâitre–Robertson–Walker cosmological model dominated by bulk viscous cosmic fluid in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity with the functional form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mi>Q</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <i>n</i> are free parameters of the model. We constrain our model with the Pantheon supernovae dataset of 1048 data points, the Hubble dataset of 31 data points, and the baryon acoustic oscillations dataset consisting of 6 data points. We find that our <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></semantics></math></inline-formula> cosmological model efficiently describes the observational data. We present the evolution of our deceleration parameter with redshift, and it properly predicts a transition from decelerated to accelerated phases of the universe’s expansion. Furthermore, we present the evolution of density, bulk viscous pressure, and the effective equation of state parameter with redshift. Those show that bulk viscosity in a cosmic fluid is a valid candidate to acquire the negative pressure to drive the cosmic expansion efficiently. We also examine the behavior of different energy conditions to test the viability of our cosmological <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></semantics></math></inline-formula> model. Furthermore, the statefinder diagnostics are also investigated in order to distinguish among different dark energy models.