Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Database of nitrification and nitrifiers in the global ocean
oleh: W. Tang, B. B. Ward, M. Beman, L. Bristow, D. Clark, S. Fawcett, C. Frey, F. Fripiat, G. J. Herndl, M. Mdutyana, F. Paulot, X. Peng, A. E. Santoro, T. Shiozaki, E. Sintes, C. Stock, X. Sun, X. S. Wan, M. N. Xu, Y. Zhang
| Format: | Article |
|---|---|
| Diterbitkan: | Copernicus Publications 2023-11-01 |
Deskripsi
<p>As a key biogeochemical pathway in the marine nitrogen cycle, nitrification (ammonia oxidation and nitrite oxidation) converts the most reduced form of nitrogen – ammonium–ammonia (NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9e82b08d319a1c899f60c89d4a61df91"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-5039-2023-ie00001.svg" width="8pt" height="15pt" src="essd-15-5039-2023-ie00001.png"/></svg:svg></span></span>–NH<span class="inline-formula"><sub>3</sub></span>) – into the oxidized species nitrite (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5fb634118ac0229fabfb051218e1093b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-5039-2023-ie00002.svg" width="9pt" height="16pt" src="essd-15-5039-2023-ie00002.png"/></svg:svg></span></span>) and nitrate (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0723f17b5be9fc41c36a5585631feb47"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-5039-2023-ie00003.svg" width="9pt" height="16pt" src="essd-15-5039-2023-ie00003.png"/></svg:svg></span></span>). In the ocean, these processes are mainly performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). By transforming nitrogen speciation and providing substrates for nitrogen removal, nitrification affects microbial community structure; marine productivity (including chemoautotrophic carbon fixation); and the production of a powerful greenhouse gas, nitrous oxide (N<span class="inline-formula"><sub>2</sub></span>O). Nitrification is hypothesized to be regulated by temperature, oxygen, light, substrate concentration, substrate flux, pH and other environmental factors. Although the number of field observations from various oceanic regions has increased considerably over the last few decades, a global synthesis is lacking, and understanding how environmental factors control nitrification remains elusive. Therefore, we have compiled a database of nitrification rates and nitrifier abundance in the global ocean from published literature and unpublished datasets. This database includes 2393 and 1006 measurements of ammonia oxidation and nitrite oxidation rates and 2242 and 631 quantifications of ammonia oxidizers and nitrite oxidizers, respectively. This community effort confirms and enhances our understanding of the spatial distribution of nitrification and nitrifiers and their corresponding drivers such as the important role of substrate concentration in controlling nitrification rates and nitrifier abundance. Some conundrums are also revealed, including the inconsistent observations of light limitation and high rates of nitrite oxidation reported from anoxic waters. This database can be used to constrain<span id="page5040"/> the distribution of marine nitrification, to evaluate and improve biogeochemical models of nitrification, and to quantify the impact of nitrification on ecosystem functions like marine productivity and N<span class="inline-formula"><sub>2</sub></span>O production. This database additionally sets a baseline for comparison with future observations and guides future exploration (e.g., measurements in the poorly sampled regions such as the Indian Ocean and method comparison and/or standardization). The database is publicly available at the Zenodo repository: <a href="https://doi.org/10.5281/zenodo.8355912">https://doi.org/10.5281/zenodo.8355912</a> (Tang et al., 2023).</p>