Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
On the Topological Indices of Commuting Graphs for Finite Non-Abelian Groups
oleh: Fawad Ali, Bilal A. Rather, Nahid Fatima, Muhammad Sarfraz, Asad Ullah, Khalid Abdulkhaliq M. Alharbi, Rahim Dad
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-06-01 |
Deskripsi
A topological index is a number generated from a molecular structure (i.e., a graph) that indicates the essential structural properties of the proposed molecule. Indeed, it is an algebraic quantity connected with the chemical structure that correlates it with various physical characteristics. It is possible to determine several different properties, such as chemical activity, thermodynamic properties, physicochemical activity, and biological activity, using several topological indices, such as the geometric-arithmetic index, arithmetic-geometric index, Randić index, and the atom-bond connectivity indices. Consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> as a group and <i>H</i> as a non-empty subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>. The commuting graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mi mathvariant="script">G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></semantics></math></inline-formula>, has <i>H</i> as the vertex set, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>h</mi><mn>1</mn></msub><mo>,</mo><msub><mi>h</mi><mn>2</mn></msub><mo>∈</mo><mi>H</mi></mrow></semantics></math></inline-formula> are edge connected whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>h</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>h</mi><mn>2</mn></msub></semantics></math></inline-formula> commute in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>. This article examines the topological characteristics of commuting graphs having an algebraic structure by computing their atomic-bond connectivity index, the Wiener index and its reciprocal, the harmonic index, geometric-arithmetic index, Randić index, Harary index, and the Schultz molecular topological index. Moreover, we study the Hosoya properties, such as the Hosoya polynomial and the reciprocal statuses of the Hosoya polynomial of the commuting graphs of finite subgroups of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SL</mo><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Finally, we compute the <i>Z</i>-index of the commuting graphs of the binary dihedral groups.