Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Automatic Segmentation and Classification Methods Using Optical Coherence Tomography Angiography (OCTA): A Review and Handbook
oleh: Kristen M. Meiburger, Massimo Salvi, Giulia Rotunno, Wolfgang Drexler, Mengyang Liu
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-10-01 |
Deskripsi
Optical coherence tomography angiography (OCTA) is a promising technology for the non-invasive imaging of vasculature. Many studies in literature present automated algorithms to quantify OCTA images, but there is a lack of a review on the most common methods and their comparison considering multiple clinical applications (e.g., ophthalmology and dermatology). Here, we aim to provide readers with a useful review and handbook for automatic segmentation and classification methods using OCTA images, presenting a comparison of techniques found in the literature based on the adopted segmentation or classification method and on the clinical application. Another goal of this study is to provide insight into the direction of research in automated OCTA image analysis, especially in the current era of deep learning.