Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Viscosity and Strength Properties of Cemented Tailings Backfill with Fly Ash and Its Strength Predicted
oleh: Jie Wang, Jianxin Fu, Weidong Song, Yongfang Zhang
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-01-01 |
Deskripsi
It is of great significance to study the effect of solid contents (SC), binder-to-tailings (b/t) ratio, types and dosage of fly ash (FA) on the viscosity (<i>V</i>) and uniaxial compressive strength (UCS) of backfill. It can improve filling efficiency and reduce filling costs to understand the relationship between SC, b/t ratio, FA dosage and viscosity, and UCS of backfill. Consequently, this paper carried out uniaxial compression tests and rheological tests on five different types of backfill specimens. Experimental results indicate that, with the increase of SC, the viscosity and UCS of all backfill samples increases as a power function. With the decrease of b/t ratio, the viscosity and UCS of all backfill samples decreases as an exponential function. The coupling effect of SC and b/t ratio has a great influence on the viscosity and UCS of backfill samples. The relationship between SC, b/t ratio and viscosity, and UCS is a quadratic polynomial function. The order of the viscosity of the backfill slurry is: pure tailings < backfill slurry mixed with Ordinary Portland Cement (OPC) < backfill slurry mixed with FA1 < backfill slurry mixed with FA2. The higher the FA dosage, the greater the viscosity. The order of the UCS of backfill is: backfill with OPC > backfill with FA1 > backfill with FA2. The higher the FA dosage, the smaller the UCS. The UCS of all backfill samples increased with the increase of curing time (CT). The relations between the viscosity and UCS of backfill present the positively linear functions. It is feasible to use viscosity to predict the UCS of backfill, and the error between the UCS predicted value and the test value is mostly controlled within 10%. Ultimately, the findings of the experimental work will provide a scientific reference for the mine to design the strength of the backfill.