Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
How to GAN Higher Jet Resolution
oleh: Pierre Baldi, Lukas Blecher, Anja Butter, Julian Collado, Jessica N. Howard, Fabian Keilbach, Tilman Plehn, Gregor Kasieczka, Daniel Whiteson
| Format: | Article |
|---|---|
| Diterbitkan: | SciPost 2022-09-01 |
Deskripsi
QCD-jets at the LHC are described by simple physics principles. We show how super-resolution generative networks can learn the underlying structures and use them to improve the resolution of jet images. We test this approach on massless QCD-jets and on fat top-jets and find that the network reproduces their main features even without training on pure samples. In addition, we show how a slim network architecture can be constructed once we have control of the full network performance.