Infinite Series Concerning Tails of Riemann Zeta Values

oleh: Chunli Li, Wenchang Chu

Format: Article
Diterbitkan: MDPI AG 2023-08-01

Deskripsi

Infinite series involving Riemann’s zeta and Dirichlet’s lambda tails, and weighted by three harmonic-like elementary symmetric functions are examined. By means of integral representations of zeta tails together with the telescopic approach, twelve general summation theorems are established that express these series as coefficients of the bivariate beta function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Beta</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula>. By further expanding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Beta</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> into Laurent series in <i>u</i> and <i>v</i>, several explicit summation formulae are shown as consequences.