Enhanced sucrose fermentation by introduction of heterologous sucrose transporter and invertase into Clostridium beijerinckii for acetone–butanol–ethanol production

oleh: Lihua Lin, Zhikai Zhang, Hongchi Tang, Yuan Guo, Bingqing Zhou, Yi Liu, Ribo Huang, Liqin Du, Hao Pang

Format: Article
Diterbitkan: The Royal Society 2021-09-01

Deskripsi

A heterologous pathway for sucrose transport and metabolism was introduced into Clostridium beijerinckii to improve sucrose use for n-butanol production. The combined expression of StSUT1, encoding a sucrose transporter from potato (Solanum tuberosum), and SUC2, encoding a sucrose invertase from Saccharomyces cerevisiae, remarkably enhanced n-butanol production. With sucrose, sugarcane molasses and sugarcane juice as substrates, the C. beijerinckii strain harbouring StSUT1 and SUC2 increased acetone–butanol–ethanol production by 38.7%, 22.3% and 52.8%, respectively, compared with the wild-type strain. This is the first report to demonstrate enhanced sucrose fermentation due to the heterologous expression of a sucrose transporter and invertase in Clostridium. The metabolic engineering strategy used in this study can be widely applied in other microorganisms to enhance the production of high-value compounds from sucrose-based biomass.