Banach spaces for which the space of operators has 2𝔠 closed ideals

oleh: Daniel Freeman, Thomas Schlumprecht, András Zsák

Format: Article
Diterbitkan: Cambridge University Press 2021-01-01

Deskripsi

We formulate general conditions which imply that ${\mathcal L}(X,Y)$, the space of operators from a Banach space X to a Banach space Y, has $2^{{\mathfrak {c}}}$ closed ideals, where ${\mathfrak {c}}$ is the cardinality of the continuum. These results are applied to classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed ideals in ${\mathcal L}\left (\ell _p\oplus \ell _q\right )$ is exactly $2^{{\mathfrak {c}}}$ for all $1<p<q<\infty $.