Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains

oleh: Xiangxing Tao

Format: Article
Diterbitkan: Wiley 2014-01-01

Deskripsi

Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div⁡(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp integrability of the second-order derivative of the solution to the Schrödinger equation on Ω with the Dirichlet boundary condition for n/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given.