Design and pre-clinical profiling of a <it>Plasmodium falciparum </it>MSP-3 derived component for a multi-valent virosomal malaria vaccine

oleh: Boato Francesca, Vogel Denise, Westerfeld Nicole, Stoffel Sabine A, Mueller Markus S, Tamborrini Marco, Zurbriggen Rinaldo, Robinson John A, Pluschke Gerd

Format: Article
Diterbitkan: BMC 2009-12-01

Deskripsi

<p>Abstract</p> <p>Background</p> <p>Clinical profiling of two components for a synthetic peptide-based virosomal malaria vaccine has yielded promising results, encouraging the search for additional components for inclusion in a final multi-valent vaccine formulation. This report describes the immunological characterization of linear and cyclized synthetic peptides comprising amino acids 211-237 of <it>Plasmodium falciparum </it>merozoite surface protein (MSP-3).</p> <p>Methods</p> <p>These peptides were coupled to phosphatidylethanolamine (PE); the conjugates were intercalated into immunopotentiating reconstituted influenza virosomes (IRIVs) and then used for immunizations in mice to evaluate their capacity to elicit <it>P. falciparum </it>cross-reactive antibodies.</p> <p>Results</p> <p>While all MSP-3-derived peptides were able to elicit parasite-binding antibodies, stabilization of turn structures by cyclization had no immune-enhancing effect. Therefore, further pre-clinical profiling was focused on FB-12, a PE conjugate of the linear peptide. Consistent with the immunological results obtained in mice, all FB-12 immunized rabbits tested seroconverted and consistently elicited antibodies that interacted with blood stage parasites. It was observed that a dose of 50 μg was superior to a dose of 10 μg and that influenza pre-existing immunity improved the immunogenicity of FB-12 in rabbits. FB-12 production was successfully up-scaled and the immunogenicity of a vaccine formulation, produced according to the rules of Good Manufacturing Practice (GMP), was tested in mice and rabbits. All animals tested developed parasite-binding antibodies. Comparison of ELISA and IFA titers as well as the characterization of a panel of anti-FB-12 monoclonal antibodies indicated that at least the majority of antibodies specific for the virosomally formulated synthetic peptide were parasite cross-reactive.</p> <p>Conclusion</p> <p>These results reconfirm the suitability of IRIVs as a carrier/adjuvant system for the induction of strong humoral immune responses against a wide range of synthetic peptide antigens. The virosomal formulation of the FB-12 peptidomimetic is suitable for use in humans and represents a candidate component for a virosomal multi-valent malaria subunit vaccine.</p>