Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Kink soliton behavior study for systems with power-law nonlinearity
oleh: Xiaoning Liu, Yubin Jiao, Ying Wang, Qingchun Zhou, Wei Wang
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2022-02-01 |
Deskripsi
In this study, we investigate the kink soliton dynamics for power-law nonlinear systems. Based on the F-expansion method, we first derive the novel kink soliton solution of the nonlinear Schrödinger equation (NLSE) with third-order dispersion term, power-law dependent nonlinearity term, linear attenuation term, and self-steepness term under appropriate parameter settings. With pictorial demonstration, we show that the obtained kink soliton solution not only has the soliton features of the classical NLSE, but also has power-law features. The theoretical results presented in our work can be used to guide the observation of soliton behavior in power-law dependent media.