Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
oleh: T. Li, H. Liu, R. Wang, X.-T. Lü, J. Yang, Y. Zhang, P. He, Z. Wang, X. Han, Y. Jiang
Format: | Article |
---|---|
Diterbitkan: | Copernicus Publications 2019-07-01 |
Deskripsi
<p>Sulfur (S) availability plays a vital role in driving functions of terrestrial ecosystems, which can be largely affected by soil inorganic S fractions and pool size. Enhanced nitrogen (N) input can significantly affect soil S availability, but it still remains largely unknown if the N effect varies with frequency of N addition and mowing management in grasslands. To investigate changes in the soil S pool and inorganic S fractions (soluble S, adsorbed S, available S, and insoluble S), we conducted a field experiment with different frequencies (two times per year vs. monthly additions per year) and intensities (i.e., 0, 1, 2, 3, 5, 10, 15, 20, and 50 g N m<span class="inline-formula"><sup>−2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>) of <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span> addition and mowing (unmown vs. mown) over 6 years in a temperate grassland of northern China. Generally, N addition frequency, N intensity, and mowing significantly interacted with each other to affect most of the inorganic S fractions. Specifically, a significant increase in soluble S was only found at high N frequency with the increasing intensity of N addition. Increasing N addition intensity enhanced adsorbed S and available S concentrations at low N frequency in unmown plots; however, both fractions were significantly increased with N intensity at both N frequencies in mown plots. The high frequency of N addition increased the concentrations of adsorbed S and available S in comparison to the low frequency of N addition only in mown plots. Changes in soil S fractions were mainly related to soil pH, N availability, soil organic carbon (SOC), and plant S uptake. Our results suggested that N input could temporarily replenish soil-available S by promoting dissolution of soil-insoluble S with decreasing soil pH and mineralization of organic S due to increasing plant S uptake. However, the significant decrease in organic S and total S concentrations with N addition intensity in mown plots indicated that N addition together with biomass removal would eventually cause soil S depletion in this temperate grassland in the long term. Our results further indicated that using large and infrequent N additions to simulate N deposition can overestimate the main effects of N deposition and mowing management on soil S availability in semiarid grasslands.</p>