Optimal Dispatching of Offshore Microgrid Considering Probability Prediction of Tidal Current Speed

oleh: Anan Zhang, Yangfan Sun, Wei Yang, Huang Huang, Yating Feng

Format: Article
Diterbitkan: MDPI AG 2019-09-01

Deskripsi

Oceans contain rich tidal current energy, which can provide sufficient power for offshore microgrids. However, the uncertainty of tidal flow may endanger the operational reliability of an offshore microgrid. In this paper, a probabilistic prediction model of tidal current is established based on support vector quantile regression to reduce the influence of uncertainty. Firstly, the penalty factors and kernel parameters of the proposed prediction model was optimized by the dragonfly algorithm to predict the tidal speed of any time of a day in different quantiles. Secondly, combining the above result with the kernel density to predict the probability density function of the tidal current speed, which is to improve the accuracy of prediction in the absence of information. Thirdly, an optimal generation dispatching strategy with tidal current generators is proposed to minimize the fuel consumption of offshore microgrids. Finally, a case study based on the offshore oil and gas platform in Bohai shows that the mean absolute percent error of the proposed model is 2.8142%, which is better than support vector quantile regression model and support vector regression model optimized by the genetic algorithm.