Consensus <i>SE</i>(3)-Constrained Extended Kalman Filter for Close Proximity Orbital Relative Pose Estimation

oleh: S. Mathavaraj, Eric A. Butcher

Format: Article
Diterbitkan: MDPI AG 2024-09-01

Deskripsi

In this paper, a recently proposed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-constrained extended Kalman filter (EKF) is extended to formulate a strategy for relative orbit estimation in a space-based sensor network. The resulting consensus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-constrained EKF utilizes space-based sensor fusion and is applied to the problem of spacecraft proximity operations and formation flying. The proposed filter allows for the state (i.e., pose and velocities) estimation of the deputy satellite while accounting for measurement error statistics using the rotation matrix to represent attitude. Via a comparison with a conventional filter in the literature, it is shown that the use of the proposed consensus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-constrained EKF can improve the convergence performance of the existing filter for satellite formation flying. Moreover, the benefits of faster convergence and consensus speed by using communication networks with more connections are illustrated to show the significance of the proposed sensor fusion strategy in spacecraft proximity operations.