Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
In situ micro-FTIR spectroscopic investigations of synthetic ammonium phengite under pressure and temperature
oleh: N. Abdel-Hak, N. Abdel-Hak, B. Wunder, I. Efthimiopoulos, M. Koch-Müller, M. Koch-Müller
| Format: | Article |
|---|---|
| Diterbitkan: | Copernicus Publications 2020-09-01 |
Deskripsi
<p>Phengite is known to be an important mineral in the transport of alkalis and water to upper mantle depths. Since ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00001.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00001.png"/></svg:svg></span></span>) can substitute for <span class="inline-formula">K<sup>+</sup></span> in K-bearing minerals, phengite is thus a potential host to transport nitrogen into the mantle. However, the temperature and pressure conditions at which devolatilisation of <span class="inline-formula">NH<sub>4</sub></span>-bearing phengite occurs are not well constrained. In this study, <span class="inline-formula">NH<sub>4</sub></span>-phengite (<span class="inline-formula">NH<sub>4</sub></span>)(<span class="inline-formula">Mg<sub>0.5</sub>Al<sub>1.5</sub></span>)<span class="inline-formula">(Al<sub>0.5</sub>Si<sub>3.5</sub>)O<sub>10</sub>(OH)<sub>2</sub></span> was synthesised in piston-cylinder experiments at 700 <span class="inline-formula"><sup>∘</sup></span>C and 4.0 GPa. Its devolatilisation behaviour was studied by means of in situ micro-FTIR (Fourier transform infrared) spectroscopy under low and high temperatures from <span class="inline-formula">−180</span> up to 600 <span class="inline-formula"><sup>∘</sup></span>C at ambient pressure using a Linkam cooling–heating stage and pressures up to 42 GPa at ambient temperature in diamond anvil cell (DAC) experiments. In addition to these short-term in situ experiments, we performed quenched experiments where the samples were annealed for 24 h at certain temperatures and analysed at room conditions by micro-FTIR spectroscopy.</p> <p>Our results can be summarised as follows: (1) an order–disorder process of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8cff18dc7544e09830abea500d71300b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00002.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00002.png"/></svg:svg></span></span> molecule takes place with temperature variation at ambient pressure; (2) <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="0cbc4fa826540dbaebe9f7dd184b3bee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00003.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00003.png"/></svg:svg></span></span> is still retained in the phengite structure up to 600 <span class="inline-formula"><sup>∘</sup></span>C, and the expansion of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="cb88f58b3b25b473f7c5a29ace587a7f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00004.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00004.png"/></svg:svg></span></span> molecule with heating is reversible for short-term experiments; (3) kinetic effects partly control the destabilisation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8954cfb2fcef1f8dc372e5d7425e25d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00005.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00005.png"/></svg:svg></span></span> in phengite; (4) ammonium loss occurs at temperatures near dehydration; (5) <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="97c709e7ff43e05afce356dc3f53b497"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00006.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00006.png"/></svg:svg></span></span> in phengite is apparently distorted above 8.6 GPa at ambient temperature; and (6) the local symmetry of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00007.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00007.png"/></svg:svg></span></span> molecule is lowered/descended/reduced by increasing pressure (<span class="inline-formula"><i>P</i></span>) or decreasing temperature (<span class="inline-formula"><i>T</i></span>), and the type and mechanism of this lowered symmetry is different in both cases. The current study confirms the wide stability range of phengite and its volatiles and thus has important implications for the recycling of nitrogen and hydrogen into the deep Earth. Moreover, it is considered as a first step in the crystallographic determination of the orientation of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="730c3bacbcf80f0a2c8df5dbccbd0cf0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-469-2020-ie00008.svg" width="24pt" height="15pt" src="ejm-32-469-2020-ie00008.png"/></svg:svg></span></span> molecule in the phengite structure.</p>