A new finite element approach to model microscale strain localization within olivine aggregates

oleh: J. Furstoss, J. Furstoss, J. Furstoss, C. Petit, C. Ganino, M. Bernacki, D. Pino-Muñoz

Format: Article
Diterbitkan: Copernicus Publications 2021-10-01

Deskripsi

<p>This paper presents a new mesoscopic full field approach for the modeling of microstructural evolutions and mechanical behavior of olivine aggregates. The mechanical framework is based on a reduced crystal plasticity (CP) formulation which is adapted to account for non-dislocation glide strain-accommodating mechanisms in olivine polycrystals. This mechanical description is coupled with a mixed velocity–pressure finite element (FE) formulation through a classical crystal plasticity finite element method (CPFEM) approach. The microstructural evolutions, such as grain boundary migration and dynamic recrystallization, are also computed within a FE framework using an implicit description of the polycrystal through the level-set approach.</p> <p>This numerical framework is used to study the strain localization, at the polycrystal scale, on different types of pre-existing shear zones for thermomechanical conditions relevant to laboratory experiments. We show that both fine-grained and crystallographic textured pre-existing bands favor strain localization at the sample scale. The combination of both processes has a large effect on strain localization, which emphasizes the importance of these two microstructural characteristics (texture and grain size) on the mechanical behavior of the aggregate.</p> <p>Table <a href="#Ch1.T1">1</a> summarizes the list of the acronyms used in the following.</p>