Seasonal Arctic sea ice forecasting with probabilistic deep learning

oleh: Tom R. Andersson, J. Scott Hosking, María Pérez-Ortiz, Brooks Paige, Andrew Elliott, Chris Russell, Stephen Law, Daniel C. Jones, Jeremy Wilkinson, Tony Phillips, James Byrne, Steffen Tietsche, Beena Balan Sarojini, Eduardo Blanchard-Wrigglesworth, Yevgeny Aksenov, Rod Downie, Emily Shuckburgh

Format: Article
Diterbitkan: Nature Portfolio 2021-08-01

Deskripsi

Accurate seasonal forecasts of sea ice are highly valuable, particularly in the context of sea ice loss due to global warming. A new machine learning tool for sea ice forecasting offers a substantial increase in accuracy over current physics-based dynamical model predictions.