Technical note: Effects of iron(II) on fluorescence properties of dissolved organic matter at circumneutral pH

oleh: K. Jia, K. Jia, C. C. M. Manning, C. C. M. Manning, A. Jollymore, A. Jollymore, R. D. Beckie

Format: Article
Diterbitkan: Copernicus Publications 2021-09-01

Deskripsi

<p>Modern fluorescence spectroscopy methods, including excitation–emission matrix (EEM) spectra parsed using parallel factor analysis (PARAFAC) statistical approaches, are widely used to characterize dissolved organic matter (DOM) pools. The effect of soluble reduced iron, Fe(II), on EEM spectra can be significant but is difficult to quantitatively assign. In this study, we examine the effects of Fe(II) on the EEM spectra of groundwater samples from an anaerobic deltaic aquifer containing up to 300 <span class="inline-formula">mg L<sup>−1</sup></span> Fe(II), located a few kilometres from the ocean and adjacent to the Fraser River in Richmond, British Columbia, Canada. We added varying quantities of Fe(II) into groundwater samples to evaluate Fe(II)–DOM interactions. Both the overall fluorescence intensity and the intensity of the primary peak, a humic-like substance at excitation and emission wavelengths of 239 and 441–450 <span class="inline-formula">nm</span> (peak A), respectively, decreased by approximately 60 <span class="inline-formula">%</span> as Fe(II) concentration increased from 1 to 306 <span class="inline-formula">mg L<sup>−1</sup></span>. Furthermore, the quenching effect was nonlinear and proportionally stronger at Fe(II) concentrations below 100 <span class="inline-formula">mg L<sup>−1</sup></span>. This nonlinear relationship suggests a static quenching mechanism. In addition, DOM fluorescence indices are substantially influenced by the Fe(II) concentration. With increasing Fe(II), the fluorescence index (FI) shifts to higher values, the humidification index (HIX) shifts to lower values, and the freshness index (FrI) shifts to higher values. Nevertheless, the 13-component PARAFAC model showed that the component distribution was relatively insensitive to Fe(II) concentration; thus, PARAFAC may be a reliable method for obtaining information about the DOM composition and its redox status in Fe(II)-rich waters. By characterizing the impacts of up to 300 <span class="inline-formula">mg L<sup>−1</sup></span> Fe(II) on EEMs using groundwater from an aquifer which contains similar Fe(II) concentrations, we advance previous work which characterized impacts of lower Fe(II) concentrations (less than 2 <span class="inline-formula">mg L<sup>−1</sup></span>) on EEMs.</p>