Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Clinical, metabolic, and genetic characterization of hereditary methemoglobinemia caused by cytochrome b5 reductase deficiency in cats
oleh: Jared A. Jaffey, N. Scott Reading, Urs Giger, Osheiza Abdulmalik, Ruben M. Buckley, Sophie Johnstone, Leslie A. Lyons, the 99 Lives Cat Genome Consortium
Format: | Article |
---|---|
Diterbitkan: | Wiley 2019-11-01 |
Deskripsi
Abstract Two non‐pedigreed male castrated cats had persistent cyanosis over a 3‐year observation period. Clinical cardiopulmonary evaluations did not reveal abnormalities, but the blood remained dark after exposure to air. Erythrocytic methemoglobin concentrations were high (~40% of hemoglobin) and cytochrome b5 reductase (CYB5R) activities in erythrocytes were low (≤15% of control). One cat remained intolerant of exertion, and the other cat developed anemia and died due to an unidentified comorbidity. Whole‐genome sequencing revealed a homozygous c.625G>A missense variant (B4:137967506) and a c.232‐1G>C splice acceptor variant (B4:137970815) in CYB5R3, respectively, which were absent in 193 unaffected additional cats. The p.Gly209Ser missense variant likely disrupts a nicotinamide adenine dinucleotide (NADH)‐binding domain, while the splicing error occurs at the acceptor site for exon 4, which likely affects downstream translation of the protein. The 2 novel CYB5R3 variants were associated with methemoglobinemia using clinical, biochemical, genomics, and in silico protein studies. The variant prevalence is unknown in the cat population.