Sasaki–Ricci Flow and Deformations of Contact Action–Angle Coordinates on Spaces <i>T</i><sup>1,1</sup> and <i>Y</i><sup>p,q</sup>

oleh: Mihai Visinescu

Format: Article
Diterbitkan: MDPI AG 2021-04-01

Deskripsi

In this paper, we are concerned with completely integrable Hamiltonian systems and generalized action–angle coordinates in the setting of contact geometry. We investigate the deformations of the Sasaki–Einstein structures, keeping the Reeb vector field fixed, but changing the contact form. We examine the modifications of the action–angle coordinates by the Sasaki–Ricci flow. We then pass to the particular cases of the contact structures of the five-dimensional Sasaki–Einstein manifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Y</mi><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></semantics></math></inline-formula>.