Approximate Controllability of Non-Instantaneous Impulsive Stochastic Evolution Systems Driven by Fractional Brownian Motion with Hurst Parameter <inline-formula><math display="inline"><semantics><mrow><mi>H</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>)</mo></mrow></mrow></semantics></math></inline-formula>

oleh: Jiankang Liu, Wei Wei, Wei Xu

Format: Article
Diterbitkan: MDPI AG 2022-08-01

Deskripsi

This paper initiates a study on the existence and approximate controllability for a type of non-instantaneous impulsive stochastic evolution equation (ISEE) excited by fractional Brownian motion (fBm) with Hurst index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>H</mi><mo><</mo><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></semantics></math></inline-formula>. First, to overcome the irregular or singular properties of fBm with Hurst parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>H</mi><mo><</mo><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></semantics></math></inline-formula>, we define a new type of control function. Then, by virtue of the stochastic analysis theory, inequality technique, the semigroup approach, Krasnoselskii’s fixed-point theorem and Schaefer’s fixed-point theorem, we derive two new sets of sufficient conditions for the existence and approximate controllability of the concerned system. In the end, a concrete example is worked out to demonstrate the applicability of our obtained results.