Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
oleh: D. Feng, H. Beck, K. Lawson, C. Shen
Format: | Article |
---|---|
Diterbitkan: | Copernicus Publications 2023-06-01 |
Deskripsi
<p>As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as <span class="inline-formula"><i>δ</i></span> or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, <span class="inline-formula"><i>δ</i></span> models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), <span class="inline-formula"><i>δ</i></span> models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), <span class="inline-formula"><i>δ</i></span> models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The <span class="inline-formula"><i>δ</i></span> models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the <span class="inline-formula"><i>δ</i></span> models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment.</p>